Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.815
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542133

RESUMO

The present investigation was designed based on the evidence that, in neurodegenerative disorders, such as Alzheimer's dementia (AD) and Parkinson's disease (PD), damage to the locus coeruleus (LC) arising norepinephrine (NE) axons (LC-NE) is documented and hypothesized to foster the onset and progression of neurodegeneration within target regions. Specifically, the present experiments were designed to assess whether selective damage to LC-NE axons may alter key proteins involved in neurodegeneration within specific limbic regions, such as the hippocampus and piriform cortex, compared with the dorsal striatum. To achieve this, a loss of LC-NE axons was induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) in C57 Black mice, as assessed by a loss of NE and dopamine-beta-hydroxylase within target regions. In these experimental conditions, the amount of alpha-synuclein (alpha-syn) protein levels were increased along with alpha-syn expressing neurons within the hippocampus and piriform cortex. Similar findings were obtained concerning phospho-Tau immunoblotting. In contrast, a decrease in inducible HSP70-expressing neurons and a loss of sequestosome (p62)-expressing cells, along with a loss of these proteins at immunoblotting, were reported. The present data provide further evidence to understand why a loss of LC-NE axons may foster limbic neurodegeneration in AD and limbic engagement during PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Camundongos , Animais , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Neurônios/metabolismo , Neurotoxinas/farmacologia , Axônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo
2.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334622

RESUMO

Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.


Assuntos
Ergotioneína , Ergotioneína/farmacologia , Ergotioneína/metabolismo , Oxidopamina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neurotoxinas/farmacologia , Morte Celular , Antioxidantes/farmacologia , Antioxidantes/metabolismo
3.
Eur J Pediatr ; 183(1): 83-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924348

RESUMO

Paediatric anterior drooling has a major impact on the daily lives of children and caregivers. Intraglandular botulinum neurotoxin type-A (BoNT-A) injections are considered an effective treatment to diminish drooling. However, there is no international consensus on which major salivary glands should be injected to obtain optimal treatment effect while minimizing the risk of side effects. This scoping review aimed to explore the evidence for submandibular BoNT-A injections and concurrent submandibular and parotid (i.e. four-gland) injections, respectively, and assess whether outcomes could be compared across studies to improve decision making regarding the optimal initial BoNT-A treatment approach for paediatric anterior drooling. PubMed, Embase, and Web of Science were searched to identify relevant studies (until October 1, 2023) on submandibular or four-gland BoNT-A injections for the treatment of anterior drooling in children with neurodevelopmental disabilities. Similarities and differences in treatment, patient, outcome, and follow-up characteristics were assessed. Twenty-eight papers were identified; 7 reporting on submandibular injections and 21 on four-gland injections. No major differences in treatment procedures or timing of follow-up were found. However, patient characteristics were poorly reported, there was great variety in outcome measurement, and the assessment of side effects was not clearly described.   Conclusion: This review highlights heterogeneity in outcome measures and patient population descriptors among studies on paediatric BoNT-A injections, limiting the ability to compare treatment effectiveness between submandibular and four-gland injections. These findings emphasize the need for more extensive and uniform reporting of patient characteristics and the implementation of a core outcome measurement set to allow for comparison of results between studies and facilitate the optimization of clinical practice guidelines. What is Known: • There is no international consensus on which salivary glands to initially inject with BoNT-A to treat paediatric drooling. What is New: • Concluding on the optimal initial BoNT-A treatment based on literature is currently infeasible. There is considerable heterogeneity in outcome measures used to quantify anterior drooling.and clinical characteristics of children treated with intraglandular BoNT-A are generally insufficiently reported. • Consensus-based sets of outcome measures and patient characteristics should be developed and implemented.


Assuntos
Toxinas Botulínicas Tipo A , Sialorreia , Humanos , Criança , Sialorreia/tratamento farmacológico , Sialorreia/etiologia , Neurotoxinas/farmacologia , Neurotoxinas/uso terapêutico , Glândula Submandibular , Toxinas Botulínicas Tipo A/uso terapêutico , Toxinas Botulínicas Tipo A/farmacologia , Resultado do Tratamento
4.
Sci Rep ; 13(1): 21729, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066055

RESUMO

Domoic acid (DA) produces neurotoxic damage in seabirds and marine mammals when they are exposed to this potent neurotoxin. Other vertebrates are also susceptible to DA intoxication including humans. However, neurobehavioral affectations have not been detected in fish when naturally exposed to DA but only when it is administered intraperitoneally. Therefore, the current idea is that fish are less sensitive to DA acquired under ecologically relevant routes of exposure. Here, we show that oral consumption of DA induces neurobehavioral and histopathological alterations in the brain and heart of totoaba (Totoaba macdonaldi) and striped bass (Morone saxatilis). Lesions were found in both species in the optic tectum and cerebellum after exposure for 7 days to a diet containing 0.776 µgDA g-1. The affectations prevailed chronically. Also, we found that cardiac tissue exhibits lesions and focal atrium melanism. Although affectations of the brain and heart tissue were evident, excitotoxic signs like those described for other vertebrates were not observed. However, the use of standardized behavioral tests (dark/light and antipredator avoidance tests) permitted the detection of behavioral impairment of fish after DA exposure. Pathological and associated behavioral alterations produced by DA can have relevant physiological consequences but also important ecological implications.


Assuntos
Bass , Ácido Caínico , Animais , Humanos , Ácido Caínico/farmacologia , Neurotoxinas/farmacologia , Encéfalo/patologia , Mamíferos
5.
Toxins (Basel) ; 15(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755966

RESUMO

Studies on animals and humans have amply demonstrated the therapeutic efficacy of botulinum neurotoxins (BoNTs) in many pathologies [...].


Assuntos
Toxinas Botulínicas , Animais , Humanos , Toxinas Botulínicas/uso terapêutico , Neurotoxinas/farmacologia , Neurotoxinas/uso terapêutico
6.
Nat Ecol Evol ; 7(9): 1444-1456, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460839

RESUMO

The molecular mechanisms of coevolution between plants and insects remain elusive. GABA receptors are targets of many neurotoxic terpenoids, which represent the most diverse array of natural products known. Over deep evolutionary time, as plant terpene synthases diversified in plants, so did plant terpenoid defence repertoires. Here we show that herbivorous insects and their predators evolved convergent amino acid changing substitutions in duplicated copies of the Resistance to dieldrin (Rdl) gene that encodes the GABA receptor, and that the evolution of duplicated Rdl and terpenoid-resistant GABA receptors is associated with the diversification of moths and butterflies. These same substitutions also evolved in pests exposed to synthetic insecticides that target the GABA receptor. We used in vivo genome editing in Drosophila melanogaster to evaluate the fitness effects of each putative resistance mutation and found that pleiotropy both facilitates and constrains the evolution of GABA receptor resistance. The same genetic changes that confer resistance to terpenoids across 300 Myr of insect evolution have re-evolved in response to synthetic analogues over one human lifespan.


Assuntos
Borboletas , Receptores de GABA , Animais , Humanos , Receptores de GABA/genética , Neurotoxinas/farmacologia , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Dieldrin/toxicidade , Insetos/genética , Terpenos/farmacologia
7.
Pflugers Arch ; 475(10): 1193-1202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474774

RESUMO

Myonecrosis is a frequent clinical manifestation of envenomings by Viperidae snakes, mainly caused by the toxic actions of secreted phospholipase A2 (sPLA2) enzymes and sPLA2-like homologs on skeletal muscle fibers. A hallmark of the necrotic process induced by these myotoxins is the rapid appearance of hypercontracted muscle fibers, attributed to the massive influx of Ca2+ resulting from cell membrane damage. However, the possibility of myotoxins having, in addition, a direct effect on the contractile machinery of skeletal muscle fibers when internalized has not been investigated. This question is here addressed by using an ex vivo model of single-skinned muscle fibers, which lack membranes but retain an intact contractile apparatus. Rabbit psoas skinned fibers were exposed to two types of myotoxins of Bothrops asper venom: Mt-I, a catalytically active Asp49 sPLA2 enzyme, and Mt-II, a Lys49 sPLA2-like protein devoid of phospholipolytic activity. Neither of these myotoxins affected the main parameters of force development in striated muscle sarcomeres of the skinned fibers. Moreover, no microscopical alterations were evidenced after their exposure to Mt-I or Mt-II. In contrast to the lack of effects on skinned muscle fibers, both myotoxins induced a strong hypercontraction in myotubes differentiated from murine C2C12 myoblasts, with drastic morphological alterations that reproduce those described in myonecrotic tissue in vivo. As neither Mt-I nor Mt-II showed direct effects upon the contractile apparatus of skinned fibers, it is concluded that the mechanism of hypercontraction triggered by both myotoxins in patients involves indirect effects, i.e., the large cytosolic Ca2+ increase after sarcolemma permeabilization.


Assuntos
Bothrops , Fosfolipases A2 Secretórias , Camundongos , Animais , Coelhos , Neurotoxinas/farmacologia , Bothrops/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/farmacologia
8.
J Biol Chem ; 299(9): 105066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468103

RESUMO

Among the rare venomous mammals, the short-tailed shrew Blarina brevicauda has been suggested to produce potent neurotoxins in its saliva to effectively capture prey. Several kallikrein-like lethal proteases have been identified, but the active substances of B. brevicauda remained unclear. Here, we report Blarina paralytic peptides (BPPs) 1 and 2 isolated from its submaxillary glands. Synthetic BPP2 showed mealworm paralysis and a hyperpolarization shift (-11 mV) of a human T-type Ca2+ channel (hCav3.2) activation. The amino acid sequences of BPPs were similar to those of synenkephalins, which are precursors of brain opioid peptide hormones that are highly conserved among mammals. However, BPPs rather resembled centipede neurotoxic peptides SLPTXs in terms of disulfide bond connectivity and stereostructure. Our results suggested that the neurotoxin BPPs were the result of convergent evolution as homologs of nontoxic endogenous peptides that are widely conserved in mammals. This finding is of great interest from the viewpoint of the chemical evolution of vertebrate venoms.


Assuntos
Canais de Cálcio Tipo T , Neurotoxinas , Peptídeos , Musaranhos , Animais , Humanos , Sequência de Aminoácidos , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/farmacologia , Peptídeos/síntese química , Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Evolução Molecular , Musaranhos/classificação , Musaranhos/genética , Musaranhos/metabolismo , Tenebrio/efeitos dos fármacos , Células HEK293 , Eletrofisiologia
9.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239873

RESUMO

Parkinson's disease (PD) is associated with dopaminergic neuron loss and alpha-synuclein aggregation caused by ROS overproduction, leading to mitochondrial dysfunction and autophagy impairment. Recently, andrographolide (Andro) has been extensively studied for various pharmacological properties, such as anti-diabetic, anti-cancer, anti-inflammatory, and anti-atherosclerosis. However, its potential neuroprotective effects on neurotoxin MPP+-induced SH-SY5Y cells, a cellular PD model, remain uninvestigated. In this study, we hypothesized that Andro has neuroprotective effects against MPP+-induced apoptosis, which may be mediated through the clearance of dysfunctional mitochondria by mitophagy and ROS by antioxidant activities. Herein, Andro pretreatment could attenuate MPP+-induced neuronal cell death that was reflected by reducing mitochondrial membrane potential (MMP) depolarization, alpha-synuclein, and pro-apoptotic proteins expressions. Concomitantly, Andro attenuated MPP+-induced oxidative stress through mitophagy, as indicated by increasing colocalization of MitoTracker Red with LC3, upregulations of the PINK1-Parkin pathway, and autophagy-related proteins. On the contrary, Andro-activated autophagy was compromised when pretreated with 3-MA. Furthermore, Andro activated the Nrf2/KEAP1 pathway, leading to increasing genes encoding antioxidant enzymes and activities. This study elucidated that Andro exhibited significant neuroprotective effects against MPP+-induced SH-SY5Y cell death in vitro by enhancing mitophagy and clearance of alpha-synuclein through autophagy, as well as increasing antioxidant capacity. Our results provide evidence that Andro could be considered a potential supplement for PD prevention.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Mitofagia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neurotoxinas/farmacologia , alfa-Sinucleína/metabolismo , Neuroproteção , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia , Apoptose , Linhagem Celular Tumoral , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , 1-Metil-4-fenilpiridínio/toxicidade
10.
JAAPA ; 36(4): 39-41, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976032

RESUMO

ABSTRACT: Clostridium botulinum is a Gram-positive bacterium that produces one of the most deadly chemodenervating toxins in the world. To date, six distinct neurotoxins are available for prescription use in the United States. Decades of data across aesthetic therapeutic areas and therapeutic disease states support the safety and efficacy of C. botulinum, providing good symptom management and improved quality of life in appropriately chosen patients. Unfortunately, many clinicians are slow to progress patients to toxin therapy from more conservative measures, and others wrongly interchange the products despite characteristics unique to each. Commensurate with an improved understanding of the complex pharmacology and clinical implications of botulinum neurotoxins is the importance for clinicians to appropriately identify, educate, refer, and/or treat candidate patients. This article provides an overview of the history, mechanism of action, differentiation, indications, and uses for botulinum neurotoxins.


Assuntos
Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Humanos , Toxinas Botulínicas/farmacologia , Toxinas Botulínicas/uso terapêutico , Qualidade de Vida , Neurotoxinas/farmacologia , Neurotoxinas/uso terapêutico , Toxinas Botulínicas Tipo A/uso terapêutico
11.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768965

RESUMO

Neuroinflammation and oxidative stress have been emerging as important pathways contributing to Parkinson's disease (PD) pathogenesis. In PD brains, the activated microglia release inflammatory factors such as interleukin (IL)-ß, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO), which increase oxidative stress and mediate neurodegeneration. Using 1-methyl-4-phenylpyridinium (MPP+)-activated human microglial HMC3 cells and the sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, we found the potential of indole derivative NC009-1 against neuroinflammation, oxidative stress, and neurodegeneration for PD. In vitro, NC009-1 alleviated MPP+-induced cytotoxicity, reduced NO, IL-1ß, IL-6, and TNF-α production, and suppressed NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in MPP+-activated HMC3 cells. In vivo, NC009-1 ameliorated motor deficits and non-motor depression, increased dopamine and dopamine transporter levels in the striatum, and reduced oxidative stress as well as microglia and astrocyte reactivity in the ventral midbrain of MPTP-treated mice. These protective effects were achieved by down-regulating NLRP3, CASP1, iNOS, IL-1ß, IL-6, and TNF-α, and up-regulating SOD2, NRF2, and NQO1. These results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanism, and indicate NC009-1 as a potential drug candidate for PD treatment.


Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Neurotoxinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Estresse Oxidativo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos
12.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635251

RESUMO

The noradrenergic locus coeruleus (LC) is among the earliest sites of tau and α-synuclein pathology in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. The onset of these pathologies coincides with loss of noradrenergic fibers in LC target regions and the emergence of prodromal symptoms including sleep disturbances and anxiety. Paradoxically, these prodromal symptoms are indicative of a noradrenergic hyperactivity phenotype, rather than the predicted loss of norepinephrine (NE) transmission following LC damage, suggesting the engagement of complex compensatory mechanisms. Because current therapeutic efforts are targeting early disease, interest in the LC has grown, and it is critical to identify the links between pathology and dysfunction. We employed the LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which preferentially damages LC axons, to model early changes in the LC-NE system pertinent to AD and PD in male and female mice. DSP-4 (two doses of 50 mg/kg, one week apart) induced LC axon degeneration, triggered neuroinflammation and oxidative stress, and reduced tissue NE levels. There was no LC cell death or changes to LC firing, but transcriptomics revealed reduced expression of genes that define noradrenergic identity and other changes relevant to neurodegenerative disease. Despite the dramatic loss of LC fibers, NE turnover and signaling were elevated in terminal regions and were associated with anxiogenic phenotypes in multiple behavioral tests. These results represent a comprehensive analysis of how the LC-NE system responds to axon/terminal damage reminiscent of early AD and PD at the molecular, cellular, systems, and behavioral levels, and provides potential mechanisms underlying prodromal neuropsychiatric symptoms.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Masculino , Feminino , Animais , Locus Cerúleo , Norepinefrina/metabolismo , Doenças Neurodegenerativas/patologia , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , Sintomas Prodrômicos , Doença de Parkinson/metabolismo
13.
Crit Rev Microbiol ; 49(1): 1-17, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35212259

RESUMO

The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.


Assuntos
Toxinas Botulínicas , Camundongos , Animais , Toxinas Botulínicas/farmacologia , Neurotoxinas/química , Neurotoxinas/farmacologia , Neurônios , Bioensaio
14.
Behav Brain Res ; 436: 114091, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058406

RESUMO

As yawning is often observed in stressful or emotional situations such as tension and anxiety, this suggests that yawning can be considered to be an emotional behavior. However, the neural mechanisms underlying emotion-induced yawning remain unclear. It is well known that the hypothalamic paraventricular nucleus (PVN) is the most important brain structure for induction of yawning behavior. We previously showed that induction of yawning involves the central nucleus of the amygdala (CeA), as well as the PVN. Therefore, emotion-induced yawning could potentially be induced through activation of the direct/indirect neural pathways from the CeA to the PVN. Our present study used a combination of retrograde tracing (injection of Fluoro-Gold (FG) into the PVN) and c-Fos immunohistochemistry to examine the neural pathways that evoke emotion-induced yawning. We additionally performed lesion experiments on the CeA using ibotenic acid, a neurotoxin, to determine whether the CeA is involved in the induction of emotion-induced yawning. Emotional stress by fear conditioning induced yawning behavior, and induced expression of double-labeled cells for c-Fos and FG in the bed nucleus of the stria terminalis (BNST), but not in the CeA. Furthermore, the CeA lesions caused by ibotenic acid abolished the induction of emotion-induced yawning. These results suggest that a neural pathway from the CeA to the PVN via the BNST may be primarily involved in the induction of emotion-induced yawning behavior.


Assuntos
Núcleo Central da Amígdala , Angústia Psicológica , Bocejo , Animais , Núcleo Central da Amígdala/metabolismo , Hipotálamo/metabolismo , Ácido Ibotênico/farmacologia , Vias Neurais/metabolismo , Neurotoxinas/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Estilbamidinas , Bocejo/fisiologia
15.
Toxicon ; 222: 106978, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410456

RESUMO

The neurotoxic, non-proteinogenic amino acid ß-N-methylamino-l-alanine (BMAA) has been implicated in the development of neurodegenerative diseases; however, the mechanism(s) and mode(s) of toxicity remain unclear. Similarities in the neuropathology and behavioural deficits of neonatal rats exposed to either BMAA or reserpine, a known vesicular monoamine transporter 2 (VMAT2) inhibitor, suggest a similar mode of action. The aims of this study were therefore to determine if BMAA could prevent the uptake of serotonin into dense granules via inhibition of VMAT2, and, if so, the type of inhibition caused by BMAA. Exposing platelet dense granules to BMAA resulted in a concentration-dependent reduction in serotonin uptake. The inhibition of VMAT2 was non-competitive. The findings from this study support previous reports that BMAA-associated neuropathologies in a neonatal rat model may be due to VMAT2 inhibition during critical periods of neurogenesis.


Assuntos
Diamino Aminoácidos , Proteínas Vesiculares de Transporte de Monoamina , Ratos , Animais , Serotonina , Diamino Aminoácidos/toxicidade , Diamino Aminoácidos/metabolismo , Aminoácidos/metabolismo , Neurotoxinas/farmacologia
16.
Prep Biochem Biotechnol ; 53(8): 914-922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573266

RESUMO

Due to their advantages in structural stability and versatility, cysteine-rich peptides, which are secreted from the venom glands of venomous animals, constitute a naturally occurring pharmaceutical arsenal. However, the correct folding of disulfide bonds is a challenging task in the prokaryotic expression system like Escherichia coli due to the reducing environment. Here, a secretory expression plasmid pSE-G1M5-SUMO-HWTX-I for the spider neurotoxin huwentoxin-I (HWTX-I) with three disulfides as a model of cysteine-rich peptides was constructed. By utilizing the signal peptide G1M5, the fusion protein 6 × His-SUMO-HWTX-I was successfully secreted into extracellular medium of BL21(DE3). After enrichment using cation-exchange chromatography and purification utilizing the Ni-NTA column, 6 × His-SUMO-HWTX-I was digested via Ulp1 kinase to release recombinant HWTX-I (rHWTX-I), which was further purified utilizing RP-HPLC. Finally, both impurities with low and high molecular weights were completely removed. The molecular mass of rHWTX-I was identified as being 3750.8 Da, which was identical to natural HWTX-I with three disulfide bridges. Furthermore, by utilizing whole-cell patch clamp, the sodium currents of hNav1.7 could be inhibited by rHWTX-I and the IC50 value was 419 nmol/L.


Assuntos
Venenos de Aranha , Aranhas , Animais , Neurotoxinas/química , Neurotoxinas/farmacologia , Cisteína/metabolismo , Aranhas/química , Aranhas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Venenos de Aranha/genética , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Peptídeos/metabolismo , Dissulfetos/metabolismo
17.
Toxins (Basel) ; 14(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287970

RESUMO

Two decades after reports of the anti-pruritic effects of botulinum neurotoxins (BoNTs), there is still no approved product for the anti-itch indication of BoNTs, and most clinical case reports still focus on the off-label use of BoNTs for various itchy conditions. Few randomized clinical trials have been conducted with controversial results, and the beneficial effects of BoNTs against itch are mainly based on case studies and case series. These studies are valuable in presenting the potential application of BoNTs in chronic pruritic conditions, but due to the nature of these studies, they are categorized as providing lower levels of evidence or lower grades of recommendation. To obtain approval for the anti-pruritic indication of BoNTs, higher levels of evidence are required, which can be achieved through conducting large-scale and well-designed studies with proper control groups and established careful and reliable primary and secondary outcomes. In addition to clinical evidence, presenting the mechanism-based antipruritic action of BoNTs can potentially strengthen, accelerate, and facilitate the current efforts towards further investments in accelerating the field towards the potential approval of BoNTs for itchy conditions. This review, therefore, aimed to provide the state-of-the-art mechanisms underlying the anti-itch effect of BoNTs from basic studies that resemble various clinical conditions with itch as a hallmark. Evidence of the neuronal, glial, and immune modulatory actions of BoNTs in reducing the transmission of itch are presented, and future potential directions are outlined.


Assuntos
Toxinas Botulínicas , Humanos , Toxinas Botulínicas/uso terapêutico , Toxinas Botulínicas/farmacologia , Antipruriginosos/uso terapêutico , Prurido/tratamento farmacológico , Neurônios , Neurotoxinas/farmacologia
18.
Sci Rep ; 12(1): 17805, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284196

RESUMO

SMER28 originated from a screen for small molecules that act as modulators of autophagy. SMER28 enhanced the clearance of autophagic substrates such as mutant huntingtin, which was additive to rapamycin-induced autophagy. Thus, SMER28 was established as a positive regulator of autophagy acting independently of the mTOR pathway, increasing autophagosome biosynthesis and attenuating mutant huntingtin-fragment toxicity in cellular- and fruit fly disease models, suggesting therapeutic potential. Despite many previous studies, molecular mechanisms mediating SMER28 activities and its direct targets have remained elusive. Here we analyzed the effects of SMER28 on cells and found that aside from autophagy induction, it significantly stabilizes microtubules and decelerates microtubule dynamics. Moreover, we report that SMER28 displays neurotrophic and neuroprotective effects at the cellular level by inducing neurite outgrowth and protecting from excitotoxin-induced axon degeneration. Finally, we compare the effects of SMER28 with other autophagy-inducing or microtubule-stabilizing drugs: whereas SMER28 and rapamycin both induce autophagy, the latter does not stabilize microtubules, and whereas both SMER28 and epothilone B stabilize microtubules, epothilone B does not stimulate autophagy. Thus, the effect of SMER28 on cells in general and neurons in particular is based on its unique spectrum of bioactivities distinct from other known microtubule-stabilizing or autophagy-inducing drugs.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/farmacologia , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Microtúbulos/metabolismo
19.
Chemosphere ; 309(Pt 1): 136464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122751

RESUMO

Saxitoxin (STX) is a highly toxic marine neurotoxin produced by phytoplankton and a growing threat to ecosystems worldwide due to the spread of toxic algae. Although STX is an established sodium channel blocker, the overall profile of transcriptional levels in STX-exposed organisms has yet to be described. Here, we describe a toxicity assay and transcriptome analysis of the copepod Tigriopus japonicus exposed to STX. The half-maximal lethal concentration of STX was 12.35 µM, and a rapid mortality slope was evident at concentrations between 12 and 13 µM. STX induced changes in swimming behavior among the copepods after 10 min of exposure. In transcriptome analysis, gene ontology revealed that the genes involved in nervous system and gene expression were highly enriched. In addition, the congenital neurological disorder and nuclear factor erythroid 2-related factor 2-mediated oxidative stress pathways were identified to be the most significant in network analysis and toxicity pathway analysis, respectively. This study provides valuable information about the effects of STX and related transcriptional responses in T. japonicus.


Assuntos
Copépodes , Saxitoxina , Animais , Saxitoxina/toxicidade , Copépodes/genética , Ecossistema , Neurotoxinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia
20.
Physiol Res ; 71(4): 551-560, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36165412

RESUMO

In the rat model, 6-hydroxydopamine (6-OHDA) known as a selective catecholaminergic neurotoxin used chiefly in modeling Parkinson's disease (PD). Continuous aerobic exercise and curcumin supplementations could play a vital role in neuroprotection. This study aimed to explore the neuroprotective roles of regular aerobic exercise and curcumin during PD. For this, rats were treated as follows for 8 consecutive weeks (5 d in a week): For this, animals were orally treated with curcumin (50 ml/kg) alone or in combination with aerobic exercise. Compared with a control group, induction of PD by 6-OHDA increased the amount of alpha-synuclein protein and malondialdehyde levels and decreased the number of substantia nigra neurons, total antioxidant capacity, and glutathione peroxidase activity in brain tissue. All these changes were abolished by the administration of curcumin with aerobic exercise treatments. Activity behavioral tests also confirmed the above-mentioned results by increasing the rod test time and the number of rotations due to apomorphine injection. Histopathology assays mimic the antioxidant activity and behavioral observations. Combined curcumin with aerobic exercise treatments is potentially an effective strategy for modifying the dopaminergic neuron dysfunction in 6-OHDA-induced rats modeling PD via dual inhibiting oxidative stress indices and regulating behavioral tasks.


Assuntos
Curcumina , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apomorfina/metabolismo , Apomorfina/farmacologia , Curcumina/metabolismo , Curcumina/farmacologia , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Malondialdeído , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Substância Negra , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...